Production of nitrous oxide from nitrite in Klebsiella pneumoniae: mutants altered in nitrogen metabolism.
نویسندگان
چکیده
Under anaerobic conditions, Klebsiella pneumoniae reduced nitrite (NO2-), yielding nitrous oxide (N2O) and ammonium ions (NH4+) as products. Nitrous oxide formation accounted for about 5% of the total NO2- reduced, and NH4+ production accounted for the remainder. Glucose and pyruvate were the electron donors for NO2- reduction to N2O by whole cells, whereas glucose, NADH, and NADPH were found to be the electron donors when cell extracts were used. On the one hand, formate failed to serve as an electron donor for NO2- reduction to N2O and NH4+, whereas on the other hand, formate was the best electron donor for nitrate reduction in either whole cells or cell extracts. Mutants that are defective in the reduction of NO2- to NH4+ were isolated, and these strains were found to produce N2O at rates comparable to that of the parent strain. These results suggest that the nitrite reductase producing N2O is distinct from that producing NH4+. Nitrous oxide production from nitric oxide (NO) occurred in all mutants tested, at rates comparable to that of the parent strain. This result suggests that NO reduction to N2O, which also uses NADH as the electron donor, is independent of the protein(s) catalyzing the reduction of NO2- to N2O.
منابع مشابه
Expression of Klebsiella pneumoniae nitrogen fixation genes in nitrate reductase mutants of Escherichia coli.
Nitrate reductase (nar) A, B and E mutants of Escherichia coli with plasmids carrying Klebsiella pneumoniae nitrogen fixation (nif) genes reduced acetylene independently of added molybdate, but nar D mutants showed pleiotropic dependence on the concentration of added molybdate for expression of both nar and nif. No complementation of nar mutations by nif occurred; nitrite but not nitrate repres...
متن کاملNitrifying and denitrifying pathways of methanotrophic bacteria.
Nitrous oxide, a potent greenhouse gas and ozone-depleting molecule, continues to accumulate in the atmosphere as a product of anthropogenic activities and land-use change. Nitrogen oxides are intermediates of nitrification and denitrification and are released as terminal products under conditions such as high nitrogen load and low oxygen tension among other factors. The rapid completion and pu...
متن کاملProduction and utilization of nitrous oxide by Pseudomonas denitrificans.
Nitrous oxide has been recognized as a product of denitrifying organisms since the early work of Gayon and Dupetit (1882a, b; 1886). Under some conditions it can be the major initial product (Wijler and Delwiche, 1954). Kluyver and Verhoeven (1954) have investigated the production of nitrous oxide by a large number of denitrifiers and conclude that its production and utilization is characterist...
متن کاملDenitrifying Bacterial Communities Affect Current Production and Nitrous Oxide Accumulation in a Microbial Fuel Cell
The biocathodic reduction of nitrate in Microbial Fuel Cells (MFCs) is an alternative to remove nitrogen in low carbon to nitrogen wastewater and relies entirely on microbial activity. In this paper the community composition of denitrifiers in the cathode of a MFC is analysed in relation to added electron acceptors (nitrate and nitrite) and organic matter in the cathode. Nitrate reducers and ni...
متن کاملInhibition of methanogenesis in salt marsh sediments and whole-cell suspensions of methanogenic bacteria by nitrogen oxides.
Hydrogen-dependent evolution of methane from salt marsh sediments and whole-cell suspensions of Methanobacterium thermoautotrophicum and Methanobacterium fornicicum ceased or decreased after the introduction of nitrate, nitrite, nitric oxide, or nitrous oxide. Sulfite had a similar effect on methanogenesis in the whole-cell suspensions. In salt marsh sediments, nitrous oxide was the strongest i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 155 2 شماره
صفحات -
تاریخ انتشار 1983